Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract BackgroundSilk proteins have emerged as versatile biomaterials with unique chemical and physical properties, making them appealing for various applications. Among them, spider silk, known for its exceptional mechanical strength, has attracted considerable attention. Recombinant production of spider silk represents the most promising route towards its scaled production; however, challenges persist within the upstream optimization of host organisms, including toxicity and low yields. The high cost of downstream cell lysis and protein purification is an additional barrier preventing the widespread production and use of spider silk proteins. Gram-positive bacteria represent an attractive, but underexplored, microbial chassis that may enable a reduction in the cost and difficulty of recombinant silk production through attributes that include, superior secretory capabilities, frequent GRAS status, and previously established use in industry. ResultsIn this study, we explore the potential of gram-positive hosts by engineering the first production and secretion of recombinant spider silk in theBacillusgenus. Using an industrially relevantB. megateriumhost, it was found that the Sec secretion pathway enables secretory production of silk, however, the choice of signal sequence plays a vital role in successful secretion. Attempts at increasing secreted titers revealed that multiple translation initiation sites in tandem do not significantly impact silk production levels, contrary to previous findings for other gram-positive hosts and recombinant proteins. Notwithstanding, targeted amino acid supplementation in minimal media was found to increase production by 135% relative to both rich media and unaltered minimal media, yielding secretory titers of approximately 100 mg/L in flask cultures. ConclusionIt is hypothesized that the supplementation strategy addressed metabolic bottlenecks, specifically depletion of ATP and NADPH within the central metabolism, that were previously observed for anE. colihost producing the same recombinant silk construct. Furthermore, this study supports the hypothesis that secretion mitigates the toxicity of the produced silk protein on the host organism and enhances host performance in glucose-based minimal media. While promising, future research is warranted to understand metabolic changes more precisely in theBacillushost system in response to silk production, optimize signal sequences and promoter strengths, investigate the mechanisms behind the effect of tandem translation initiation sites, and evaluate the performance of this system within a bioreactor.more » « less
-
Abstract BackgroundThe increasing prevalence of plastic waste combined with the inefficiencies of mechanical recycling has inspired interest in processes that can convert these waste streams into value-added biomaterials. To date, the microbial conversion of plastic substrates into biomaterials has been predominantly limited to polyhydroxyalkanoates production. Expanding the capabilities of these microbial conversion platforms to include a greater diversity of products generated from plastic waste streams can serve to promote the adoption of these technologies at a larger scale and encourage a more sustainable materials economy. ResultsHerein, we report the development of a new strain ofPseudomonasbacteria capable of converting depolymerized polyethylene into high value bespoke recombinant protein products. Using hexadecane, a proxy for depolymerized polyethylene, as a sole carbon nutrient source, we optimized media compositions that facilitate robust biomass growth above 1 × 109 cfu/ml, with results suggesting the benefits of lower hydrocarbon concentrations and the use of NH4Cl as a nitrogen source. We genomically integrated recombinant genes for green fluorescent protein and spider dragline-inspired silk protein, and we showed their expression inPseudomonas aeruginosa, reaching titers of approximately 10 mg/L when hexadecane was used as the sole carbon source. Lastly, we demonstrated that chemically depolymerized polyethylene, comprised of a mixture of branched and unbranched alkanes, could be converted into silk protein byPseudomonas aeruginosaat titers of 11.3 ± 1.1 mg/L. ConclusionThis work demonstrates a microbial platform for the conversion of a both alkanes and plastic-derived substrates to recombinant, protein-based materials. The findings in this work can serve as a basis for future endeavors seeking to upcycle recalcitrant plastic wastes into value-added recombinant proteins.more » « less
-
Park, Jun; Nielsen, David (Ed.)
An official website of the United States government
